a2 United States Patent

Chen et al.

US009146824B1

US 9,146,824 B1
Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(60)

(1)

(52)

(58)

MANAGEMENT OF BIT LINE ERRORS
BASED ON A STORED SET OF DATA

Applicant: Marvell International Ltd., Hamilton
(BM)

Inventors: Chih-Ching Chen, Milpitas, CA (US);
Hyunsuk Shin, San Jose, CA (US); Chi
Kong Lee, Fremont, CA (US);
Siu-Hung Frederick Au, Fremont, CA
(US); Jungil Park, San Jose, CA (US);
Fei Sun, Santa Clara, CA (US)

Marvell International Ltd., Hamilton
(BM)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 242 days.

Appl. No.: 13/669,359

Filed: Novw. 5,2012
Related U.S. Application Data

Provisional application No. 61/555,604, filed on Nov.
4,2011.

Int. Cl1.

GO6F 1122 (2006.01)

G11C 29/00 (2006.01)

U.S. CL

CPC GO6F 11/2268 (2013.01); G11C 29/88

(2013.01)
Field of Classification Search
CPC ... GOG6F 11/22; GOG6F 11/2268; G11C 29/08;
G11C 29/12; G11C 29/70; G11C 29/88
USPC e 714/6.1,6.11, 6.13
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,631,868 A * 5/1997 Termullo etal. 365/200

6,260,156 B1* 7/2001 Garvinetal. 714/6.13

6,463,550 B1* 10/2002 Cepulisetal. 714/25

6,490,697 B1* 12/2002 Machidaetal. ... 714/42

6,505,313 B1* 12003 Phanetal. ... 714/718

7,064,980 B2 6/2006 Cernea

7,443,757 B2 10/2008 Cernea

7,492,640 B2 2/2009 Mokhlesi

7,532,514 B2 5/2009 Cernea

8,589,730 B2* 112013 Byometal. ... 714/16
2002/0073367 Al* 6/2002 Hartmann 714/719

OTHER PUBLICATIONS

Wikipedia’s Flash Memory version from Oct. 29, 2011 http://en.
wikipedia.org/w/index.php?title=Flash__memory&
oldid=457977012 *

* cited by examiner

Primary Examiner — Joseph Schell

(57) ABSTRACT

The present disclosure includes systems and techniques relat-
ing to management of bit line errors based on a stored set of
data. In some implementations, a system can include a device
including non-volatile solid state memory and a memory
controller. The memory controller can be configured to iden-
tify, from the solid state memory of the device, one or more bit
line errors for the device upon power up of the system, con-
struct a set of data corresponding to the one or more bit line
errors for the device, store the set of data, at least in part, in the
device, and, upon a subsequent power up of the system,
identify the one or more bit line errors for the device from the
stored set of data.

30 Claims, 6 Drawing Sheets

500 g
510 ““(_ Store two or more copies of the set of data including the identified
bit line errors at a memory device

520 \’L_ Read contenis of the reemory devics including the two ot more
copies of the set of data at the subsequent power up

530 U Compare the twe or more copics of the set of data

540 "\L {dentify the bit line errors for the plurality of devices based on the

comparison of the two or more copies of the set of data

US 9,146,824 B1

Sheet 1 of 6

Sep. 29, 2015

U.S. Patent

i Ol
i3 A
JO[ORUGS slemuii4 | NdD
P80 .Nﬁ)
pPZEt
aoias(I el isyng
Aousiy | pegt PPEL sbed
T L I e S
f . Bras St i
oo | oUng e JONBULIO Bousnbag
rowspy [Eaee ! [Sver abeg | °9CH
ooy = SQOBLSIU| Ly #e 1SOH
B2IRB(] el SOUNT i i - "
fowsyy [Goet | [det] oo 5 |aez ide 41!
> o toteny
ot L eomeq G OBl . 0l ?mm
o T it Jsyng
Aousei | egel ;34244 sbed
==t ?
N. gzl N N 8ol >
paih

U.S. Patent Sep. 29, 2015 Sheet 2 of 6 US 9,146,824 B1

PR
« £ B
[ted
Mb\
o é
B S
Loty
= %
&
ook
8 o
T e T
2 L
P T
B8
" S
N \%
gg g

U.S. Patent Sep. 29, 2015 Sheet 3 of 6 US 9,146,824 B1

200 205 .
Set of
Data
/ 250

BMA Memory Memoaory Memory

270 . =P Controller interface L Device

an 210 260 /) 248
{ jl /____,J
Y
oY _ R
215 ~ | Memory ECC
£28 £30
FlG. 2A
281
Z&\ ,,,,,, Set of 225

e Data
j 250

BIMA : Memory Memory Memory

270 *Controlier interface P Device

— 210 260 240

*
P
*a © 3 e
B oo R BE Al L DT PR

202?&
,,,,, Set of T
,,,,,,,,, Data 205 Memory
S A s
BMA ;‘a Memory Memory

Device
248

370 . ﬁsﬂtraiie' . iﬁtéi‘f&ﬁ?w‘) ' Memory
S i 210 E 280 , H Device

3 : . j{ 225 |
{ “ : L Mamory
~ |1 Memory ECC ,ﬁ Device

US 9,146,824 B1

Sheet 4 of 6

Sep. 29, 2015

U.S. Patent

¢ i

ug | 1-uglz-ug a | oa
ug | L-ud] 2-ug | e-ug ROCA Sru L3 | 00 @
ug | L-ud] z-ug | e-ualeMtesddds-ual (] 1a | oa \Rax\%\v

ug | -ud | z-ug a1 | oa

U.S. Patent Sep. 29, 2015 Sheet 5 of 6 US 9,146,824 B1

400

410 U

Identify bit ine errors from solid state memory of a plurality of
memory devices at a power up of a system

!

420 il

Counstruct a set of data corresponding to bt line errors for the
phurality of memory devices

430

Store the set of data at a memory device of the plurality of memory
devices

440 -1

Identity the bit line ervors for the plurality of memory devices from

the stored set of data at a subsequent power up of the system

FIG. 4

U.S. Patent Sep. 29, 2015 Sheet 6 of 6 US 9,146,824 B1

500

510 T Store two or more copies of the set of data including the identified
bit line errors at a memory device

!

520 “\L Read contents of the memory device including the two or more
copies of the set of data at the subsequent power up

530 ‘ SUP
—\L Compare the two or more copics of the set of data

%

540 w“(_ {dentify the bit line errors for the plurality of devices based on the
comparison of the two or more copies of the set of data

FIG. 5

600

610 1 Store the set of data including the identified bit line errors in a
plurality of memory pages

820 640
1 o At least some of the pluralily f
The plurality of memory pages - L
o ; of memory pages are within
are within one memory device different memory devices

y y

630 ‘1 identify the bit line crrors for | fdentify the bit tine orrors for § f ~ 850
the memory devices by the memory devices by
accessing the plurality of accessing the plurality of

mermory pages in paratlel

MEOry Pages i sequence

FiG. 6

US 9,146,824 B1

1
MANAGEMENT OF BIT LINE ERRORS
BASED ON A STORED SET OF DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 61/555,604 filed on Nov. 4, 2011, the disclo-
sure of which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

The subject matter of this application is generally related to
identification of bit line errors in non-volatile memory.

BACKGROUND

Memories typically employ arrays of analog memory cells
for storing data. Each analog memory cell can store an analog
value, such as an electrical charge or voltage, that represents
the data stored in a corresponding cell. Each analog memory
cell can hold a certain amount of electrical charge. A range of
possible analog values is typically divided into intervals each
corresponding to one or more data bit values (e.g., two bits,
three bits or four bits). Generally, data is written to an analog
memory cell by writing a nominal analog value that corre-
sponds to a desired bit or bits.

Commonly, two types of memory devices are used: single-
level cell (SLC) flash memory and multi-level cell (MLC)
flash memory. SLC flash memory can store a single bit of
information in each memory cell, whereas MLC flash
memory can store two or more bits per memory cell. While
programming for SLC flash memory is generally simple (e.g.,
as only one bit is placed in a cell), its storage capacity is
generally smaller than ML.C flash memory and thus less desir-
able for applications that demand large storage capacity.

During fabrication of memory cells, errors or defects in a
small portion of the cells are expected. Manufacturers of
memory devices can employ validation processes that detect
bit line errors. Based on the validation process, a signature or
information identifying usable bits of a memory device canbe
placed into respective bits to support identification of usable
bit lines. Upon integration of the memory device, a system or
controller can scan the memory device for the signatures or
information identifying usable bit lines and employ a mecha-
nism to re-route or bypass defective bit lines.

SUMMARY

The present disclosure includes systems and techniques
relating to identifying bit line errors in non-volatile memory.
According to an aspect of the described systems and tech-
niques, a system can include a device including non-volatile
solid state memory and a memory controller. The memory
controller can be configured to identify, from the solid state
memory of the device, one or more bit line errors for the
device upon power up of the system, construct a set of data
corresponding to the one or more bit line errors for the device,
store the set of data, at least in part, in the device, and, upon a
subsequent power up of the system, identify the one or more
bit line errors for the device from the stored set of data.

In some implementations, the device can be a device of
multiple devices. In some implementations, the set of data can
be stored in multiple memory pages. In some implementa-
tions, the multiple memory pages can be within one device
and, upon a subsequent power up, the one or more bit line

10

15

20

30

40

45

50

55

2

errors for the devices can be identified, at least in part, by
accessing the multiple memory pages in series. In some
implementations, at least two of the multiple memory pages
can be within different devices and, upon a subsequent power
up, the one or more bit line errors for the devices can be
identified, at least in part, by accessing the multiple memory
pages in parallel. In some implementations, the devices are
NAND devices.

According to another aspect of the described systems and
techniques, a memory controller can include an interface to
connect with non-volatile solid state memory of multiple
devices and circuitry to identify, from the non-volatile solid
state memory of the devices, one or more bitline errors for the
devices upon power up of the system, construct a set of data
corresponding to the bit line errors for the devices, store the
set of data, at least in part, in a device, and, upon a subsequent
power up of the system, identify the one or more bit line errors
from the stored set of data.

According to another aspect of the described systems and
techniques, a method can include identifying, from the non-
volatile solid state memory of multiple devices, one or more
bit line errors for the devices upon power up of the system,
constructing a set of data corresponding to the one or more bit
line errors for the devices, storing the set of data, at least in
part, in a device, and, upon a subsequent power up of the
system, identifying the one or more bit line errors from the
stored set of data.

In some implementations, two or more copies of the set of
data can be stored in one or more devices. In some implemen-
tations, identifying the one or more bit line errors upon the
subsequent power up can include comparing the two or more
copies of the set of data and identifying the one or more bit
line errors based on the comparison of the two or more copies
of the set of data.

In some implementations, the set of data can be stored in
multiple memory pages. In some implementations, the mul-
tiple memory pages can be within one device and, upon a
subsequent power up, the one or more bit line errors for the
devices can be identified, at least in part, by accessing the
multiple memory pages in series. In some implementations,
at least two of the multiple memory pages can be within
different devices and, upon a subsequent power up, the one or
more bit line errors for the devices can be identified, atleast in
part, by accessing the multiple memory pages in parallel.

In some implementations, identifying the one or more bit
line errors upon the subsequent power up can include identi-
fying, from non-volatile solid state memory of the device, any
bit line error of the device, reading the set of data from the
device, and identifying the one or more bit line errors for the
multiple devices based on the set of data stored in the device.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. This technology can sig-
nificantly reduce the time required to identify defective bit
lines of a memory device. At any subsequent power up of a
system, bit line error information can be made available to the
system without scanning the entire memory of all memory
devices of the system.

Additionally, the described technology can reduce the
overall cost of a storage system including memory devices,
where the cost to manage defective bit lines is adopted by the
memory controller (i.e., the memory controller manages
defective bit lines) and not the memory devices of the storage
system.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-

US 9,146,824 B1

3

tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A shows an example of a solid state drive system.

FIG. 1B shows an example of a flash memory array.

FIG. 2A shows an example of a sequence for scanning a
memory device for bit line errors.

FIG. 2B shows an example of a sequence for scanning a
memory device for bit line errors and storing a set of data in
the memory device.

FIG. 2C shows another example of a sequence for scanning
a memory device for bit line errors and storing a set of data in
the memory device.

FIG. 3 shows an example for rerouting and skipping defec-
tive bit lines of a memory device.

FIG. 4 shows an example of a process for managing bit line
error information.

FIG. 5 shows an example of a process for managing bit line
error information based on multiple copies of a set of data
including bit line errors.

FIG. 6 shows an example of a process for managing bit line
error information stored in multiple memory pages within
memory devices.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

The systems and techniques described herein can be imple-
mented as one or more devices, such as one or more integrated
circuit (IC) devices, in an electronic data storage device.

Memories are commonly structured as rectangular arrays
of memory cells. The memory cells are arranged in orthogo-
nal bit lines and word lines. One or more bits of data are
written to each memory cell by injecting sufficient electrical
charge into a floating gate of the memory cell to place the
memory cell’s threshold voltage within a range of threshold
voltages that represents the value of that bit or of those bits. A
memory cell is then subsequently read by comparing its
threshold voltage to reference voltages that mark the bound-
aries between threshold voltage ranges. For a NOR flash
memory, the memory cells are written and read individually.
For a NAND flash memory, the memory cells are written and
read one page at a time, with each word line including a small
integral number (typically one or two, generally no more than
four) of pages. The word lines are grouped further into blocks,
such that memory cells are erased an entire block at a time.

Defects within bit lines of a memory device can arise, for
example, during a fabrication process of the memory device.
The defects can be detected during a validation process and
signatures indicating usable bit lines can be placed in respec-
tive bits of the bit line. The signatures of each bit line in a
memory device can be read individually and bit line errors can
be identified based on the signature (e.g., a bit is presumed
defective if it does not include the expected signature). Upon
identification of bit line errors defective bit lines can be
bypassed to ensure that data is only stored in usable bit lines
of'the memory device. This identification of bit line errors is
generally performed at every power up of a system, e.g., a
solid state drive system, which includes memory devices.

The information identifying the defective bit lines is gen-
erally stored in a memory unit of the system and available to
a memory controller. A memory controller can be a central
processor unit (CPU), a solid state drive controller, a solid

10

15

20

25

30

35

40

45

50

55

60

65

4

state memory controller, or any other device configured to
manage memories. At power down of the system, the contents
of the memory unit, including bit line error information, can
be erased. At any subsequent power up, the memory devices
of'the system are tested again to identify the bit line errors for
the memory devices. Scanning of the memory devices for bit
line errors can be very time consuming and may deplete
system resources, particularly when the system includes a
large quantity of memory devices.

In some implementations, bit line error information can be
stored in a set of data (e.g., in a table). The set of data can be
stored directly in one or more of the memory devices upon
completing the validation process. By storing the bit line error
information in a persistent memory of one or more of the
memory devices, the bit line error information can be
retrieved at any subsequent power up of the system. This can
provide a mechanism for the system to retrieve the bit line
error information for all memory devices without scanning
each individual bit line of the memory devices to detect bit
line errors. Since the bit line error information can be avail-
able without the time consuming scan process of the memory
devices, a time from power up to functional use of the
memory devices can be significantly reduced.

FIG. 1 shows an example of a solid state drive system 100.
As shown in FIG. 1, the system 100 caninclude a host 102 and
a solid state drive system 104. The solid state drive system
104 can include a host interface 110, a central processor unit
(CPU) 123, a memory interface 128, a controller 130 and
memory devices 106a, 1065, 106¢ and 106d (e.g., flash
memory devices, NOR Flash EEPROM (Electrically Eras-
able Programmable Read-Only Memory), AND Flash
EEPROM, DiNOR Flash EEPROM, Serial Flash EEPROM,
DRAM (Dynamic Random Access Memory), SRAM (Static
Random Access Memory), EPROM (Erasable Program-
mable Read-Only Memory), FRAM (Ferroelectric Random
Access Memory), MRAM (Magnetoresistive Random
Access Memory), or PCRAM (Phase-Change Random
Access Memory)).

The host 102 can communicate with the solid state drive
system 104 through the host interface 110. The host interface
110, in some implementations, can include a Serial Advanced
Technology Attachment (SATA) interface or a Parallel
Advanced Technology Attachment (PATA) interface. A
SATA interface or PATA interface can be used to convert
serial or parallel data into parallel or serial data, respectively.
For example, if the host interface 110 includes a SATA inter-
face, then the SATA interface can receive serial data trans-
ferred from the host 102 through a bus 103 (e.g., a SATA bus),
and convert the received serial data into parallel data. In other
implementations, the host interface 110 can include a hybrid
interface. In these implementations, the hybrid interface can
be used in conjunction with, for example, a serial interface.

The host interface 110, in some implementations, can
include one or more registers in which operating commands
and addresses from the host 102 can be temporarily stored.
The host interface 110 can communicate a PROGRAM or
READ command to a solid state controller 108 in response to
stored information in the register(s).

As shown in FIG. 1A, the solid state controller 108 can
include the host interface 110, an error correction code (ECC)
module 112, interface logic 114, a sequencer 116, a formatter
118, aCPU 123 containing embedded firmware 124 by which
the solid state controller 108 can be controlled, and a control-
ler 130. The CPU 123 can include a microprocessor, a signal
processor (e.g., a digital signal processor) or microcontroller.

US 9,146,824 B1

5

In some implementations, the CPU 123 with the embedded
firmware 124 can reside outside of the solid state drive system
104.

In some implementations, the solid state drive system 104
can include one or more channels 1264, 1265, 126¢ and 1264,
and each channel 126a-126d can be configured to receive one
or more control signals (e.g., four chip-enable signals) or
READ, PROGRAM or ERASE data or commands from the
host 102 or from the memory devices 106a-1064.

The solid state controller 108 can be configured to handle
any suitable command, status, or control request for access to
the memory devices 106a-106d. For example, the solid state
controller 108 can be configured to manage and control stor-
age and retrieval of data in the memory devices 106a-1064d.
To initialize a READ, PROGRAM or ERASE operation, the
solid state controller 108 can receive one or more service
requests or commands (e.g., READ, PROGRAM and
ERASE requests) from the host 102 (or from the controller
130).

In some implementations, the solid state controller 108 can
be a part of a microcomputer system under the control of a
microprocessor (not shown). The solid state controller 108
can control the flow of commands and data between the host
102 and the solid state drive system 104. In some implemen-
tations, the solid state controller 108 can include read-only
memory (ROM), random-access memory (RAM) and other
internal circuits. The solid state controller 108, in some
implementations, can be configured to support various func-
tions associated with the memory devices 106a-1064, such
as, without limitation, diagnosing the memory devices 106a-
106d, sending commands (e.g., activation, READ, PRO-
GRAM, ERASE, pre-charge and refresh commands) to the
memory devices 106a-106d, and receiving status from the
memory devices 106a-1064d. Diagnosing the memory devices
can include the identification of defective bit lines within the
memory devices. The solid state controller 108 can be formed
ona same or different chip as the memory devices 106a-1064d.
The solid state controller 108 also can be formed on a same or
different chip as the solid state drive system 104.

The memory devices 106a-1064 can be coupled with the
memory interface 128. In some implementations, if the
memory devices 106a-106d include NAND-type memory
devices, the memory interface 128 can be a NAND flash
input/output interface.

In some implementations, the solid state drive system 104
(and/or the host 102) can be mounted on a system on-chip
(SOC). The SOC, in these implementations, can be fabricated
using, for example, a digital process. The SOC can include an
embedded process system (e.g., an embedded CPU) separate
from the CPU 123 in the solid state drive system 104. The
SOC also can include a SRAM (Static Random Access
Memory), system logic, cache memory and cache controller
for processing program code and data. The program code and
data associated with the embedded process system can be
stored in the memory devices 106a-106d, and communicated
to the SOC through, for example, an SOC interface (not
shown). The SOC interface can be used by a translator for
translating information flowing between the interface and the
internal bus structure of the SOC. Control signals can flow
from the SOC to the memory devices 106a-106d4 while
instructions and data can flow from the memory devices
106a-106d to the SOC during READ operations. Instructions
and data also can be sent to the memory devices 106a-1064
during PROGRAM operations.

In some implementations, the memory devices 106a-1064
can be controlled by the controller 130. The host 102 can
communicate with the memory devices 106a-106d through

10

15

20

25

30

35

40

45

50

55

60

65

6

the controller 130. The controller 130 can be connected to the
memory devices 106a-106d through a corresponding pin or
terminal. In these implementations, the controller 130 can be
implemented as an application specific integrated circuit
(ASIC) or as an SOC.

Additionally or alternatively, the host 102 can communi-
cate with the memory devices 106a-1064 through the solid
state controller 108. For example, the host 102 can transmit
one or more commands to the solid state controller 108, and
through the memory interface 128, the solid state controller
108 can send the host’s commands to the memory devices
106a-106d. The memory interface 128 can be a NAND flash
1/O interface. The NAND flash interface can include one or
more pins each corresponding to a specific function, as will be
discussed in greater detail below.

In some implementations, the memory devices 106a-1064
can be coupled with a plurality of page buffers 132qa, 1325,
132¢ and 1324. In some implementations, each memory
device 106a-106d can be associated with a respective page
buffer 1324-1324. For example, as illustrated in FIG. 1A, the
memory device 106a can be associated with the page buffer
132a; the memory device 1065 can be associated with the
page buffer 1325; the memory device 106¢ can be associated
with the page buffer 132¢; and the memory device 1064 can
be associated with the page buffer 1324. If desired, each
memory device 106a-106d also can be associated with more
than one page buffer.

In some implementations, the page buffers 1324-132d can
be used as a temporary storage during PROGRAM/READ
operations on the memory cells of the selected page. Each
page buffer 132a-1324d can have a storage capability at least
equal to a storage capability of a memory page (e.g., 2 Kb).

Each page buffer 1324-1324d can store one page of write
data to be programmed into one page of memory cells. Each
page buffer 1324-1324 can include, without limitation, reg-
isters, sense circuits for sensing data read from one page of
memory cells, verify logic, latching circuits or writing driv-
ers. During PROGRAM operations, each page buffer 132a-
132d can latch PROGRAM data received over a respective
channel 126a-126d, and transfer the latched data to the
respective memory device 106a-106d4. Each page buffer
132a-132d also can perform program verify operations to
ensure that the programmed data has been properly pro-
grammed into the memory devices 106a-1064.

As discussed above, the page buffers 132a-132d can be
connected to the solid state controller 108 through respective
channels 126a-126d. In some implementations, the page
buffers 132a-132d also can be connected to the memory
interface 128 through respective channels 134a, 1345, 134¢
and 134d, and to the memory devices 106a-106d through
channels 136a, 1365, 136¢ and 136d. In some implementa-
tions, both the memory interface 128 and the page buffers
132a-132d can be formed as internal components of the solid
state drive system 104 or the solid state controller 108. In
other implementations, the page buffers 132a-132d can be
formed as external components to the solid state drive system
104 or the solid state controller 108.

To select a particular page buffer 132a-132d for storing
PROGRAM data, input (e.g., user input or input provided by
software programs) can be received through a double data
rate (DDR) interface (not shown), which can be error-cor-
rected by the ECC module 112. For READ data, the ECC
module 112 can be used to correct any error present in the
READ data retrieved from the memory devices 106a-1064d.
For PROGRAM data, the ECC module 112 can be used to add
one or more redundant bits to the PROGRAM data. Once the
PROGRAM data is written, the redundant bits allow error-

US 9,146,824 B1

7

correction to be performed in a subsequent READ cycle of the
written PROGRAM data. The ECC module 112 can first
select a set of data to be rewritten to the memory devices
106a-106d, add redundant data to the selected set of data, and
pass the selected set of data with the redundant information to
the memory devices 106a-1064 through a corresponding
channel 126a-126d (e.g., following a firmware request order
issued by the firmware 124). Output of the ECC module 112
then can be used as a SELECT signal to designate a page
buffer 132a-132d for a particular PROGRAM operation.

In some implementations, the memory devices 106a-1064
can be multi-plane memory devices each including, for
example, four planes. Each memory device 106a-1064 also
can include a non-volatile memory (e.g., a single-level flash
memory or a multi-level flash memory). In some implemen-
tations, the nonvolatile memory can include a NAND-type
flash memory module. A NAND-type flash memory module
can include a command/address/data multiplexed interface
such that commands, data, and addresses can be provided
through corresponding input/output pins. Advantages of
using NAND-type flash memory devices as the memory
devices 106a-106d include, without limitation, faster boot
and resume times; longer battery life; and higher data reli-
ability.

Each memory device 106a-1064 can be connected to a
respective channel 126a-126d. Each channel 126a-1264 can
support, for example, one or more input and output lines, chip
select signal lines, chip enable signal lines and the like. The
channel also can support other signal lines such as, without
limitation, write enable, read enable, read/busy output, and
reset signal lines. To increase the degree of parallelism, each
memory device 106a-106d can have its own channel con-
nected to the solid state drive system 104 as shown in FIG.
1A. For example, memory device 106a can be connected to
the solid state drive system 104 using channel 126a; memory
device 1065 can be connected to the solid state drive system
104 using channel 1265; memory device 106c¢ can be con-
nected to the solid state drive system 104 using channel 126¢;
and memory device 1064 can be connected to the solid state
drive system 104 using channel 1264. In other implementa-
tions, the memory devices 106a-106d can share a common
channel.

The memory devices 106a-106d can be connected to the
solid state drive system 104 via standard interfaces such as an
Open NAND Flash Interface (OFNI). For the host-to-drive
connection, standard connectors can be used that include,
without limitation, SATA, USB (Universal Serial Bus), SCSI
(Small Computer System Interface), PCMCIA (Personal
Computer Memory Card International Association), and
IEEE-1394 (Firewire).

Each memory device 106a-106d can include one or more
dies (e.g., flash dies), each being selected using a chip enable
signal or chip select signal. A solid state storage die can be
partitioned into planes, blocks and pages. In some implemen-
tations, a page can have a capacity of 2 Kbytes, 4 Kbytes, 8K
bytes or 16 KB. In some implementations, each die can be
configured as a single bit memory cell (SLC) or multi-level
memory cell (MLC), with a corresponding command.

Where multiple dies are used, in some implementations,
the solid state drive system 104 can access more than one die
in a same memory device at the same time. The solid state
drive system 104 also can access different dies in different
memory devices at the same time. The capability to access
more than one die allows the solid state drive system 104 to
fully utilize the available resources and channels 126a-126d4
to increase the overall performance of the solid state drive
system 104. Further, where the memory devices 106a-1064

10

15

20

25

30

35

40

45

50

55

60

65

8

share a same memory input/output line and control signal
(e.g., chip enable signal), the number of pins of the solid state
controller 108 can be reduced to further minimize the cost for
manufacturing the solid state drive system 104.

A memory array of a memory device 106a-1064 can typi-
cally be organized into bits, bytes, or pages. For example, a
page can include a user portion containing 2 k bytes (or 2 kB),
and a spare portion containing 64 bytes. The memory array
further can be organized into blocks. For example, each block
can contain 128 pages.

Each of the memory devices 106a-106d can be a multi-
plane NAND flash memory device. NAND flash memory
devices generally have higher density and lower cost per bit
than NOR-type flash memory devices. A NAND flash
memory can be coupled with a NAND flash [/O interface that
allows sequential access to data. A NAND flash 1/O interface
can include multiple pins each corresponding to a specific
function.

A bit, either a zero-bit or a one-bit, can generally be stored
in a memory cell of the memory device 106a-106d. A
memory cell is a memory element containing values of one or
more data bits. A single-level memory cell (SLC) stores only
one bit of data whereas a multi-level memory cell (MLC) can
store more than one bit by choosing between multiple levels
ofelectrical charge to apply to the floating gate of the memory
cell. For example, while a SL.C can be programmed with a
logical value of “1” or “0”, a MLC can be programmed with
a logical value of “11”, “10”, “01”, or “00”.

Referring to FIG. 1B, memory cells 152 of memory array
150 are arranged in a grid having multiple rows and columns.
Though not illustrated, each memory cell 152 can include a
floating gate transistor. A certain amount of electrical charge
(electrons or holes) can be stored in a particular memory cell
by applying appropriate voltage levels to the transistor gate,
source and drain. The value stored in the memory cell can be
read by measuring the threshold voltage of the memory cell.
The threshold voltage is the minimal voltage that needs to be
applied to the gate of the transistor in order to drive the
transistor to a conduction state. The read threshold voltage
can then be used to indicate the charge stored in the memory
cell.

The gates of the transistors in each row can be connected by
a respective word line 154 (e.g., WL k, WL k+1, . . ., where
k=0 and is an integer), and the sources of the transistors in
each column can be connected by a bit line 156 (e.g., BL m,
BL m+1, . . ., where m=0 and is an integer). Where NOR
memory cells are used, the sources can be connected to the bit
lines 156 directly, and where NAND memory cells are used,
the bit lines 156 can be connected to strings of floating-gate
memory cells.

As discussed previously, a memory cell array can be
divided into multiple pages, (e.g., groups of memory cells that
are programmed and read simultaneously). Pages are some-
times sub-divided into sectors. In some implementations,
each page can include an entire row (word line) of the array.
In other implementations, each row can be divided into two or
more pages. For example, each row can be divided into two
pages with one including the odd-order memory cells and the
other including the even-order memory cells. In some imple-
mentations, a two-bit-per-memory cell memory can include
four pages per row; a three-bit-per-cell memory can include
six pages per row; and a four-bit-per-memory cell memory
can include eight pages per TOW.

Erasing of memory cells can be carried out in blocks that
contain multiple pages. A memory can include several hun-
dreds or thousands erasure blocks. In a typical two-bit-per-
memory cell memory, each erasure block can be on the order

US 9,146,824 B1

9

of thirty-two word lines, each including several hundreds or
thousands of memory cells. Each word line can be partitioned
into four pages (e.g., odd/even order memory cells, and least/
most significant bit of the memory cells). Similarly, a three-
bit-per-memory cell memory can include thirty-two word
lines per erasure block and one hundred ninety two pages per
erasure block, while a four-bit-per-memory cell memory can
include two hundred fifty six pages per erasure block.

FIG. 2A shows an example of a sequence 200 for scanning
amemory device forbit line errors. In some implementations,
the process of scanning for bit line errors can follow path 205.
A memory controller 210 can initiate a scanning of every bit
line within a memory device 240 (e.g., by data output com-
mand) through a memory interface 260 at power up of the
system (e.g., solid state drive system 100). The individual bits
of the bit lines within the memory device 240 can include
information, such as signatures, indicating whether a respec-
tive bit is defective or usable. The memory controller 210 can
determine whether each individual bit of the bit lines includes
a correct signature and store information identifying defec-
tive bit lines to memory 220 (e.g., system memory). The bit
line error information can be retrieved by the memory con-
troller 210 from memory 220 and a set of data 250 including
or derived from the bit line error information can be created.
By using the bit line error information stored in the set of data
250, the system can employ measures to re-route or skip
defective bit lines.

In some implementations, the memory controller 210 can
initiate scanning of the memory device 240 to retrieve the bit
line error information through a Direct Memory Access
(DMA) engine 270 as shown by path 215. DMA 270 allows
access to the memory device 240 independently of the
memory controller 210. The memory controller 210 initiates
the scanning of the memory device to retrieve the bit line error
information and the scan and transfer of the bit line errors is
performed by the DMA controller while the memory control-
ler 210 can perform other operations. The bit line error infor-
mation can be stored in the memory 220. A set of data 250
including or derived from the bit line error information can be
created from the information stored in the memory 220.

The memory 220 can be volatile memory and thus its data
may be lost on power down of the system, including the
constructed set of data 250. At any subsequent power up, it
would not be known which bit lines are defective or usable
without repeating the above described scanning process to
identify defective bit lines and employ measures to re-route or
skip the defective bit lines. This process can be time consum-
ing since each bit within each memory device 240 of a system
would have to be scanned at every power up to identify
defective bit lines.

FIG. 2B shows an example of a sequence 201 for scanning
a memory device for bit line errors and storing a set of data in
the memory device. In some implementations, the process of
scanning bit line errors can follow path 225. The memory
controller 210 can initiate the scanning of every bit line within
the memory device 240 (e.g., by data output command)
through the memory interface 260 at power up of the system
(e.g., solid state drive system 100) and store the bit line error
information in the memory 220 as described above. In some
implementations, the bit line error information can be passed
through an Error Correction Code (ECC) module 230 before
the bit line error information is stored in the memory 220. The
ECC module 230 can be used to correct any error present in
the bit line error information retrieved from the memory
device 240. The memory controller 210 can read the bit line

20

40

45

50

55

60

65

10

error information from the memory 220 and create a set of
data 250 including or derived from the bit line error informa-
tion.

In some implementations, the set of data 250 can be stored
in the memory device 240 (e.g., in sections of the memory
device designated for system data). The process of writing the
set of data 250 into the memory device 240 can follow path
235. The memory controller 210 can initiate the writing pro-
cess of the set of data 250 from the memory 220 to the
persistent memory of the memory device 240. The set of data
250 can be routed through the ECC module 230 before it is
stored in the memory device 240. The ECC module can be
used to add one or more redundant bits to the information in
the set of data 250. The redundant bits can allow error cor-
rection for subsequent read cycles of the set of data 250. The
stored set of data 250, and thus desired bit line error informa-
tion, can be available to the system at any subsequent power
up without repeating the scanning process of each memory
device in the system.

The set of data 250 can be relatively small compared to the
overall size of the memory device 240. For example, if an 8
KB memory device is fabricated to a specification that allows
for a maximum of 24 bit line errors, a system with 4 devices
may generate a set of data including bit line error information
with 96 data points (4 devices x24 bit line errors). Thus, the
quantity of data points defining defective bit lines the system
would have to retrieve to identify all defective bit lines of the
four devices is substantially smaller than scanning the four
devices of 8 KB each at every subsequent power up.

In some implementations, multiple copies (e.g., 10 copies)
of the set of data 250 can be stored at one or more memory
devices 240 of the system. On any subsequent power up, the
copies of the set of data 250 can be retrieved from the memory
device(s) 240 and contents of the retrieved copies can be
compared. The copies of the set of data 250 can be stored
across several bit lines within the memory device(s) 240. At
any subsequent power up of the system, it will be unknown
which bit lines of the memory device(s) 240 are defective or
usable before the complete set of data 250 is retrieved. Thus,
it is also unknown whether portions of the multiple copies of
the set of data 250 have been stored in re-routed bit lines,
because the original bit lines were defective.

For example, if the memory controller identifies after
power up of the system that bit line 2 is defective, and bit line
2 is re-routed to a spare bit line, portions of the set of data 250
may be stored inusable bit lines 1, 3, and 4. Atany subsequent
power up of the system, the system would not know that bit
line 2 is defective until either the memory device is scanned
for defective bit lines or the set of data 250, indicating that bit
line 2 is defective, is retrieved. Thus, the memory controller
would not know that the portions of the set of data 250 are
stored in bit lines 1, 3, and 4 and read the contents of bit lines
1,2, 3, and 4. The content of bit line 2 would be unusable for
reconstruction of the set of data 250. The memory controller
can compare the contents retrieved from bit lines 1, 2, 3, and
4 with other copies of the set of data 250 stored in different bit
lines. Based on the comparison, the memory controller can
match the copies of the set of data 250 and filter out the
contents of bit line 2.

The comparison of multiple copies of the set of data 250
can help ensure that the entire set of data 250 is reconstructed,
regardless whether portions of some copies of the set of data
are stored in bit lines that have been re-routed. Based on the
comparison, bit line errors corresponding to the individual
memory devices of the system can be identified without scan-
ning every bit line of the memory devices for signatures
indicating a usable bit line.

US 9,146,824 B1

11

FIG. 2C shows another example of a sequence 202 for
scanning a memory device for bit line errors and storing a set
of data in the memory device. The process of scanning for bit
line errors can follow paths 205 or 225 as described above
with respect to FIGS. 2A and 2B. In some implementations,
the memory controller 210 can initiate the scanning of the
memory device 240 to retrieve the bit line error information
through the DMA 270 as described with respect to FIG. 2A.
The process of storing the set of data 250 to the memory
device 240 can follow path 235 as described with respect to
FIG. 2B.

In some implementations, the set of data 250 can be stored
at a particular memory device 240. At any subsequent power
up of the system, the memory controller 210 can scan the bit
lines of the memory device 240 and identify the defective bit
lines. Taking into consideration the bit line errors identified
for the memory device 240 during the scan process, the
memory controller 210 can retrieve the set of data 250 stored
in the memory device 240 to ascertain defective bit lines for
all memory devices of the system. Thus, only the memory
device 240 has to be scanned for bit line errors at any subse-
quent power up to determine the bit line errors for all memory
devices of the system. In some implementations, the set of
data 250 can be stored in bit lines of the memory device 240
that are, for example, designated for system data. The alloca-
tion of particular sections within the memory device 240 for
storing the set of data 250 can focus the scan process to
identify defective bit lines to these sections within the
memory device, and thus, accelerate the reconstruction of the
set of data 250.

In some implementations, the bit line error information
stored in the set of data 250 can exceed the capacity of an
individual memory page of a memory device 240. The size of
the set of data 250 can be determined, for example, based on
the number of memory devices included in a system and the
maximum number of permitted bit line errors within a
memory device. The maximum number of permitted bit line
errors within a memory device is generally defined in the
specifications of the memory device as provided by the
memory device manufacturer (e.g., a maximum of 24 defec-
tive bit line pairs per 9 KB page)

For example, a system can include 8 channels with 64
memory devices, which is a total of 512 memory devices (8
channelsx64 memory devices). The size of a set of data
including bit line error information for one device can be, for
example, 48 bytes (e.g., based on the maximum number of
defective bit lines as defined by the manufacturer). In this
case, the overall size of the set of data for all 512 devices
would be 24 KB (512 memory devicesx48 bytes). For
memory devices with a page capacity of 8 KB, three pages
would be necessary to store the set of data including the bit
line error information for the 512 memory devices (24 KB
divided by 8 KB page capacity). The memory pages storing
the set of data 250 can be within the same memory device
(e.g., memory device 240) or across several memory devices
(e.g., memory devices 240, 242, and 244) of the system.

In some implementations, the memory controller 210 can
initiate the scanning of every bit for bit line errors of the
memory device(s) that are storing the set of data 250 at any
subsequent power up. After identifying the bit line error infor-
mation for the memory device(s) in which the set of data 250
is stored, the memory controller 210 can retrieve the set of
data 250 and read the bit line error information for all memory
devices of the system. This process avoids the need to scan
every bit of all memory devices at subsequent power ups to
identify defective bit lines of the memory devices.

20

40

45

55

12

In some implementations, a set of data 250 that extends
over multiple memory pages can be stored in the same
memory device (e.g., memory device 240). Upon subsequent
power ups of the system, the memory controller 210 can
identify the defective bit lines of the memory device in which
the set of data 250 is stored by scanning every bit of the
memory device. Upon identification of the bit line errors for
the memory device, the memory controller 210 can initiate
retrieval of the set of data 250 stored in the memory pages
within the device. The memory pages of the memory device
in which the set of data 250 is stored can be accessed by the
memory controller 210 in sequence. When memory pages are
accessed in sequence, the total time required to read all
memory pages is determined by the time required to read an
individual memory page multiplied by the number of pages to
be read.

For example, if the set of data 250 for 512 devices is stored
in three memory pages within a single memory device, the
three memory pages can be read in sequence after the bit line
error information for the device has been determined. If each
bit line of a memory device to determine bit line errors for that
memory device can be scanned in 70 microseconds and the
data contained in an individual memory page within the
device can be read in 140 microseconds, the total time
required to read the three memory pages including the set of
data 250 would be 490 microseconds, 70 microseconds to
scan the memory device for bit line errors plus 3x140 micro-
seconds to read the set of data 250 stored in the three memory
pages of the memory device in sequence. Thus, the bit line
error information for the 512 devices can be determined
within 490 microseconds, because the retrieved set of data
includes bit line error information for all devices.

In some implementations, a set of data 250 that extends
over multiple memory pages can be stored in multiple
memory devices (e.g., memory devices 240, 242, and 244).
For example at least some of the memory pages including a
portion ofthe set of data 250 can be within a different memory
device. Upon subsequent power ups of the system, the
memory controller 210 can identify the defective bit lines of
the memory devices in which the set of data 250 is stored by
scanning every bit of these memory devices. The identifica-
tion of the defective bit lines of the memory devices storing
the set of data 250 can be performed in parallel.

Upon identification of the defective bit lines of the memory
devices storing the set of data 250, the memory controller 210
can initiate retrieval of the portion of the set of data 250 stored
at the memory page within the respective memory devices.
The memory pages within the different memory devices can
be accessed by the memory controller 210 in parallel. When
memory pages are read in parallel, the total time required to
read all pages is determined by the time required to read an
individual memory page since each memory page is read at
the same time.

A set of data 250 including bit line error information for
memory devices (e.g., 512 memory devices) of a system can
be stored in three memory pages according to the example
described above. Each memory page that includes a portion
of'the set of data 250 can be within a different memory device
of the system. During subsequent power ups of the system,
the memory controller 210 can identify the defective bit lines
of each memory device in which a portion of the set of data
250 is stored by scanning every bit line of the respective
memory device. The bit line error information of each
memory device that includes a portion of the set of data 250
can be read in parallel. Therefore, the time it takes to scan the
three memory devices in the above example can be 70 micro-
seconds if the three devices are scanned in parallel.

US 9,146,824 B1

13

Additionally, after identification of the bit line errors for
the three memory devices, the three memory pages including
the set of data 250 can be read in parallel. The total time
required to read the three memory pages thatinclude the set of
data 250 would be 210 microseconds, 70 microseconds to
scan the three memory devices for bit line errors in parallel
plus 140 microseconds to read the set of data 250 stored in the
three memory pages in parallel. Thus, the bit line error infor-
mation for the 512 devices can be determined within 210
microseconds, because the retrieved set of data includes bit
line error information for all devices.

In some implementations, multiple copies of the set of data
250 can be stored across several memory devices to avoid the
scanning process for defective bit line of the memory devices
of'the system. Each memory page in which a portion of the set
of'data 250 is stored can be within a separate memory device.
For example, if the set of data 250 extends over three memory
pages, as described in the example above, each copy of the set
of'data 250 would be stored in three separate memory devices.
Thus, to store, for example, ten copies of the set of data 250,
thirty memory devices would be required (3 memory pages
per copy of the set of data x10 copies). Upon any subsequent
startup, the memory controller 210 can read one memory
page form each of the thirty devices that store the ten copies
of the set of data 250 in parallel and compare the results to
reconstruct the set of data 250, without scanning the bit lines
of the memory devices for defects.

FIG. 3 shows an example for re-routing and skipping
defective bit lines of a memory device. The memory device
can include several bit lines 330 configured to store informa-
tion. It can be determined, for example during fabrication of
the memory device, that bit lines are defective. The manufac-
turer may place signatures or information into the individual
bits of the bit lines indicating whether the respective bit line is
usable. Thus, defective bit lines of a memory device can be
identified based on the signatures or information and a system
can avoid accessing defective bit lines to store or read data.

In some implementations, an Error Correction Code (ECC)
310 can be implemented for each identified defective bit line
at the programming stage. The ECC 310 can be written into
memory through the memory interface 320. The example in
FIG. 3 shows that the bit lines designated as D0 and D1, as
well as the bit lines Dn-3 and Dn-2 are defective and a system
should avoid storing information in these defective bit lines.
During the program path, the defective bit line pairs D0/D1
and Dn-3/Dn-2 are re-routed to replacement bit lines with the
same designation, D0/D1, and Dn-3/Dn-2 respectively. The
defective bit lines are designated as disabled during the pro-
gramming stage. During the reading stage, the disabled bit
line pair can be skipped and the replacement bit lines 360 can
be accessed instead.

FIG. 4 shows an example process 400 for managing bit line
errors of memory devices. At 410, bit line errors in non-
volatile memory devices can be identified at power up of a
system. In some implementations, the bit line errors can be
identified based on signatures stored within the individual
bits of the memory device. The signatures can be created, for
example, by the memory device manufacturer as part of the
fabrication process of the memory device. During power up
of'the system, every memory device within the system can be
scanned for bit line errors. At 420, a set of data corresponding
to the bit line errors can be constructed and stored in volatile
memory of the system. Based on the set of data, the defective
bit lines can be skipped and replaced by spare bit lines of the
memory device.

The contents of the volatile memory of the system, includ-
ing the set of data corresponding to the bit line errors, are

5

10

15

20

25

30

35

40

45

50

55

60

65

14

generally erased once the system powers down. Thus, the
system would scan every bit of the memory device bit lines at
asubsequent power up again to identify the defective bit lines.
At 430, to make the set of data including the bit line errors
available for subsequent power ups, the set of data can be
stored at a non-volatile memory device. Because the set of
datais stored directly in the persistent memory of the memory
device, the bit line errors for each device can be identified by
retrieving the stored set of data at any subsequent power up of
the system 440 without scanning each bit of each memory
device within the system.

FIG. 5 shows an example process 500 for managing bit line
errors based on multiple copies of a set of data including bit
line errors, stored on a memory device. Bit line errors of all
memory devices within a system can be identified at power up
of'the system and stored in a set of data as described above. At
510, two or more copies of the set of data including the
identified bit line errors can be stored at a memory device
within the system. Since the defective bit lines of the memory
device are identified before the copies of the set of data are
stored in the memory device, the defective bit lines can be
avoided when storing the copies. In some implementations,
the two or more copies of the set of data can be stored at a
section of the memory device that is, for example, designated
for system data. At 520, upon any subsequent power up, the
memory controller can read the contents stored in the
memory device including the copies of the set of data includ-
ing the bit line error information and retrieve the copies of the
set of data.

Each copy of the set of data includes the bit line error
information for all memory devices within the system. At
530, the retrieved copies of the set of data can be compared
and at 540, bit line errors for all memory devices within the
system can be identified based on the comparison of the
copies of the set of data including the bit line error informa-
tion. For example, the retrieved copies can be compared by an
‘exclusive or’ operation (XOR) resulting in a value of ‘true’
when the retrieved copies, or a portion thereof, match. Thus,
the bit line error information for all memory devices can be
retrieved from the copies of the set of data at subsequent
power ups without scanning each memory device for bit line
errors.

FIG. 6 shows an example of a process 600 for managing bit
line error information stored in multiple memory pages
within memory devices. Bit line errors of all memory devices
within a system can be identified at power up of the system
and stored in a set of data as described above. The size of the
set of data including the bit line error information can exceed
the capacity of a single memory page within a memory
device. At 610, the set of data can be stored across multiple
memory pages within one or more memory devices. The
memory pages can be read in sequence or in parallel. Addi-
tionally, if the memory pages, in which the set of data is
stored, are in multiple memory devices, the memory devices
can be read or scanned in sequence or in parallel. Reading
memory pages or scanning memory devices in parallel can
reduce the time required to determine bit line errors and/or to
obtain the contents of the memory pages.

In some implementations, at 620, the set of data can be
stored in multiple memory pages within one memory device.
Memory pages within a device are generally read in
sequence. However, multiple memory pages within a device
can also be read at the same time if the system is configured to
support parallel access to multiple memory pages within a
device. In some implementations, at 630, the bit line errors for
the memory devices can be identified by accessing the plu-
rality of memory pages in sequence. The set of data including

US 9,146,824 B1

15

the bit line error information for all memory devices can be
reconstructed at any subsequent power up by retrieving the
contents of each memory page including a portion of the set of
data.

In some implementations, at 640, the set of data can be
stored in multiple memory pages located within different
devices. Memory pages within different devices can be
accessed in parallel. Parallel access of memory pages can
significantly reduce the time required to retrieve information
stored in several memory pages. In some implementations, at
650, the bit line errors for the memory devices can be identi-
fied by accessing the plurality of memory pages in parallel.
The set of data including the bit line error information for all
memory devices can be reconstructed at any subsequent
power up by retrieving the contents of each memory page
including a portion of the set of data at the same time.

A few embodiments have been described in detail above,
and various modifications are possible. The disclosed subject
matter, including the functional operations described in this
specification, can be implemented in electronic circuitry,
computer hardware, firmware, software, or in combinations
of them, such as the structural means disclosed in this speci-
fication and structural equivalents thereof, including poten-
tially a program operable to cause one or more data process-
ing apparatus to perform the operations described (such as a
program encoded in a computer-readable medium, which can
be a memory device, a storage device, a machine-readable
storage substrate, or other physical, machine-readable
medium, or a combination of one or more of them).

The term “data processing apparatus”™ encompasses all
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, or multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of one or more of them.

A program (also known as a computer program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, or declarative or procedural languages, and
it can be deployed in any form, including as a stand alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A program does
notnecessarily correspond to a file in afile system. A program
can be stored in a portion of a file that holds other programs or
data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in ques-
tion, or in multiple coordinated files (e.g., files that store one
or more modules, sub programs, or portions of code). A
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

While this specification contains many specifics, these
should not be construed as limitations on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments. Certain features
that are described in this specification in the context of sepa-
rate embodiments can also be implemented in combination in
a single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed

35

40

45

55

16

combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments.

The implementations described above can also be imple-
mented for other types of non-volatile or persistent memory,
which may not be solid state.

What is claimed is:

1. A system comprising:

a plurality of memory devices including non-volatile solid

state memory; and

a memory controller configured to:

scan the non-volatile solid state memory of all of the
plurality of memory devices to identify one or more
bit line errors for the plurality of memory devices;
construct a set of data corresponding to the identified
one or more bit line errors for the plurality of memory
devices;
store multiple copies ofthe set of data in the non-volatile
solid state memory of the plurality of memory devices
prior to a power down of the plurality of memory
devices; and
upon power up of the plurality of memory devices that
occurs subsequent to the power down prior to which
the set of data is stored,
retrieve the stored multiple copies of the set of data,
perform a comparison of content of the retrieved cop-
ies of the set of data, and
use results of the comparison to reconstruct the set of
data corresponding to the identified one or more bit
line errors for the plurality of memory devices.

2. The system of claim 1, wherein ten copies of the set of
data are stored in the non-volatile solid state memory of the
plurality of memory devices.

3. The system of claim 1, wherein the comparison is an
exclusive or operation (XOR) resulting in a value of true
when the retrieved copies, or a portion thereof, match.

4. The system of claim 1, wherein the copies of the set of
data are stored in a plurality of memory pages.

5. The system of claim 4, wherein

the plurality of memory pages are within non-volatile solid

state memory of a single memory device of the plurality
of memory devices, and

the copies of the stored set of data are retrieved by access-

ing the plurality of memory pages in series.

6. The system of claim 4, wherein

at least two of the plurality of memory pages are within

non-volatile solid state memory of two different devices
of the plurality of memory devices, and

the copies of the stored set of data are retrieved by access-

ing the at least two of the plurality of memory pages in
parallel.

7. The system of claim 1, wherein the memory controller is
further configured to encode the constructed set of data using
an error correction code (ECC) prior to storing copies of the
set of data in the non-volatile solid state memory of the
plurality of memory devices; and

US 9,146,824 B1

17

decode, using the ECC, the content of the retrieved copies
of the set of data prior to performing the comparison
thereof.

8. The system of claim 1, wherein the plurality of memory
devices are NAND devices.

9. The system of claim 1, wherein the non-volatile solid
state memory of all of the plurality of memory devices is
scanned, upon a power up of the plurality of memory devices,
as part of a validation process carried out during fabrication of
the system.

10. A memory controller comprising:

an interface to connect with non-volatile solid state

memory of a plurality of memory devices; and
circuitry to:
perform a first scan of the non-volatile solid state
memory of all of the plurality of memory devices to
identify one or more bit line errors for the plurality of
memory devices;
construct a set of data corresponding to the identified
one or more bit line errors for the plurality of memory
devices;
store the set of data in the non-volatile solid state
memory of one or more but fewer than all of the
plurality of memory devices prior to a power down of
the plurality of memory devices; and
upon power up of the plurality of memory devices that
occurs subsequent to the power down prior to which
the set of data is stored,
perform a second scan of only the non-volatile solid
state memory of the one or more but fewer than all
of the plurality of memory devices which store the
set of data;
taking into consideration whether any bit line errors
are identified during the second scan, retrieve the
set of data stored in the non-volatile solid state
memory of the one or more but fewer than all of the
plurality of memory devices; and
ascertain, from the retrieved set of data, any one or
more bit line errors for all remaining ones of the
plurality of memory devices which were not
scanned as part of performing the second scan.

11. The memory controller of claim 10, wherein the plu-
rality of memory devices are NAND devices.

12. The memory controller of claim 10, wherein the set of
data is stored in a plurality of memory pages.

13. The memory controller of claim 12, wherein

the plurality of memory pages are within non-volatile solid

state memory of a single memory device of the plurality
of memory devices,

the second scan is performed by scanning only the non-

volatile solid state memory of the single memory device,
and

the stored set of data is retrieved by accessing the plurality

of memory pages in series.

14. The memory controller of claim 12, wherein

the plurality of memory devices comprises three or more

memory devices,
at least two of the plurality of memory pages are within
non-volatile solid state memory of two different
memory devices of the plurality of memory devices,

the second scan is performed by scanning only the non-
volatile solid state memory of the two different memory
devices, and

the stored set of data is retrieved by accessing the at least

two of the plurality of memory pages in parallel.

—_
w

20

25

30

35

40

45

50

55

60

18

15. The memory controller of claim 10, wherein the cir-
cuitry is further configured to

encode the constructed set of data using an error correction

code (ECC) prior to storing the set of data in the non-
volatile solid state memory of the plurality of memory
devices; and

decode, using the ECC, the content of the retrieved set of

data prior to ascertaining any one or more bit line errors
for all remaining ones of the plurality of memory devices
which were not scanned as part of performing the second
scan.

16. The memory controller of claim 10, wherein the first
scan of the non-volatile solid state memory of all of the
plurality of memory devices is performed, upon a power up of
the plurality of memory devices, as part of a validation pro-
cess carried out during fabrication of a system including the
plurality of memory devices and the memory controller.

17. A method performed by a memory controller that is
communicatively coupled with a plurality of memory devices
including non-volatile solid state memory, the method com-
prising:

performing a first scan of the non-volatile solid state

memory of all of the plurality of memory devices to
identify one or more bit line errors for the plurality of
memory devices;

constructing a set of data corresponding to the identified

one or more bit line errors for the plurality of memory
devices;

storing the set of data in the non-volatile solid state

memory of one or more but fewer than all of the plurality
of memory devices prior to a power down of the plurality
of memory devices; and

upon power up of the plurality of memory devices that

occurs subsequent to the power down prior to which the

set of data is stored,

performing a second scan of only the non-volatile solid
state memory of the one or more but fewer than all of
the plurality of memory devices which store the set of
data;

taking into consideration whether any bit line errors are
identified during the second scan, retrieving the set of
data stored in the non-volatile solid state memory of
the one or more but fewer than all of the plurality of
memory devices; and

ascertaining, from the retrieved set of data, any one or
more bit line errors for all remaining ones of the
plurality of memory devices which were not scanned
as part of performing the second scan.

18. The method of claim 17, wherein the first scan of the
non-volatile solid state memory of all of the plurality of
memory devices is performed, upon a power up, as part of a
validation process carried out during fabrication of a system
including the plurality of memory devices and the memory
controller.

19. The method of claim 17, wherein storing the set of data
comprises storing the set of data in a plurality of memory
pages.

20. The method of claim 19, wherein

the plurality of memory pages are within non-volatile solid

state memory of a single memory device of the plurality
of memory devices,

the second scan is performed by scanning only the non-

volatile solid state memory of the single memory device,
and

the method further comprises retrieving the set of data by

accessing the plurality of memory pages in series.

US 9,146,824 B1

19

21. The method of claim 19, wherein

the plurality of memory devices comprises three or more

memory devices,
at least two of the plurality of memory pages are within
non-volatile solid state memory of two different
memory devices of the plurality of memory devices, and

the method further comprises retrieving the set of data by
accessing the at least two of the plurality of memory
pages in parallel.

22. The method of claim 17, further comprising:

encoding the constructed set of data using an error correc-

tion code (ECC) prior to storing the set of data in the
non-volatile solid state memory of the plurality of
memory devices; and

decoding, by using the ECC, the content of the retrieved set

of data prior to performing the ascertaining.
23. A method performed by a memory controller that is
communicatively coupled with a plurality of memory devices
including non-volatile solid state memory, the method com-
prising:
scanning the non-volatile solid state memory of all of the
plurality of memory devices to identify one or more bit
line errors for the plurality of memory devices;

constructing a set of data corresponding to the identified
one or more bit line errors for the plurality of memory
devices;

storing multiple copies of the set of data in the non-volatile

solid state memory of the plurality of memory devices
prior to a power down of the plurality of memory
devices; and

upon power up of the plurality of memory devices that

occurs subsequent to the power down prior to which the

set of data is stored,

retrieving the stored multiple copies of the set of data,

performing a comparison of content of the retrieved
copies of the set of data, and

reconstructing, based on results of the comparison, the
set of data corresponding to the identified one or more
bit line errors for the plurality of memory devices.

10

20

25

30

20

24. The method of claim 23, wherein the scanning of the
non-volatile solid state memory of all of the plurality of
memory devices is performed, upon a power up of the plural-
ity of memory devices, as part of a validation process carried
out during fabrication of a system including the plurality of
memory devices and the memory controller.

25. The method of claim 23, wherein ten copies of the set
of'data are stored in the non-volatile solid state memory of the
plurality of memory devices.

26. The method of claim 23, wherein the comparison is an
exclusive or operation (XOR) resulting in a value of true
when the retrieved copies, or a portion thereof, match.

27. The method of claim 23, wherein the copies of the set
of data are stored in a plurality of memory pages.

28. The method of claim 27, wherein

the plurality of memory pages are within non-volatile solid
state memory of a single memory device of the plurality
of memory devices, and

the copies of the stored set of data are retrieved by access-
ing the plurality of memory pages in series.

29. The method of claim 27, wherein

at least two of the plurality of memory pages are within
non-volatile solid state memory of two different devices
of the plurality of memory devices, and

the copies of the stored set of data are retrieved by access-
ing the at least two of the plurality of memory pages in
parallel.

30. The method of claim 23 further comprising:

encoding the constructed set of data using an error correc-
tion code (ECC) prior to storing copies of the set of data
in the non-volatile solid state memory of the plurality of
memory devices; and

decoding, using the ECC, the content of the retrieved cop-

ies of the set of data prior to performing the comparison
thereof.

